3 resultados para Development of drugs

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The care of the acutely ill patient in hospital is often sub-optimal. Poor recognition of critical illness combined with a lack of knowledge, failure to appreciate the clinical urgency of a situation, a lack of supervision, failure to seek advice and poor communication have been identified as contributory factors. At present the training of medical students in these important skills is fragmented. The aim of this study was to use consensus techniques to identify the core competencies in the care of acutely ill or arrested adult patients that medical students should possess at the point of graduation. Design: Healthcare professionals were invited to contribute suggestions for competencies to a website as part of a modified Delphi survey. The competency proposals were grouped into themes and rated by a nominal group comprised of physicians, nurses and students from the UK. The nominal group rated the importance of each competency using a 5-point Likert scale. Results: A total of 359 healthcare professionals contributed 2,629 competency suggestions during the Delphi survey. These were reduced to 88 representative themes covering: airway and oxygenation; breathing and ventilation; circulation; confusion and coma; drugs, therapeutics and protocols; clinical examination; monitoring and investigations; team-working, organisation and communication; patient and societal needs; trauma; equipment; pre-hospital care; infection and inflammation. The nominal group identified 71 essential and 16 optional competencies which students should possess at the point of graduation. Conclusions: We propose these competencies form a core set for undergraduate training in resuscitation and acute care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistant strains of Plasmodium falciparum and the unavailability of useful antimalarial vaccines reinforce the need to develop new efficacious antimalarials. This study details a pharmacophore model that has been used to identify a potent, soluble, orally bioavailable antimalarial bisquinoline, metaquine (N,N'-bis(7-chloroquinolin-4-yl)benzene-1,3-diamine) (dihydrochloride), which is active against Plasmodium berghei in vivo (oral ID50 of 25 mu mol/kg) and multidrug-resistant Plasmodium falciparum K1 in vitro (0.17 mu M). Metaquine shows strong affinity for the putative antimalarial receptor, heme at pH 7.4 in aqueous DMSO. Both crystallographic analyses and quantum mechanical calculations (HF/6-31+G*) reveal important regions of protonation and bonding thought to persist at parasitic vacuolar pH concordant with our receptor model. Formation of drug-heme adduct in solution was confirmed using high-resolution positive ion electrospray mass spectrometry. Metaquine showed strong binding with the receptor in a 1: 1 ratio (log K = 5.7 +/- 0.1) that was predicted by molecular mechanics calculations. This study illustrates a rational multidisciplinary approach for the development of new 4-aminoquinoline antimalarials, with efficacy superior to chloroquine, based on the use of a pharmacophore model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.